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Abstract

Using fast imaging digital video microscopy, we investigate in detail expansion of micron-
sized pores occurring in isolated electroporated giant unilamellar vesicles composed of the 
phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). We also develop a 
computational approach to infer morphological information on the electrodeformed and 
electropermeabilized vesicles, and test the well-established prediction of Smith, Neu and 
Krassowska (SNK). The analysis we describe is consistent with the expected outcome of an 
SNK extension of the electrical force acting on a hydrophilic pore which is induced by the 
local transmembrane potential. It also provides a new theoretical perspective on how the 
conductivity ratio of the inside and the outside vesicle solution plays a determinant role in the 
definition of this electrical force driving pore expansion kinetics.
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I. Introduction and motivation

Recent literature has presented significant progress in understanding the possible mechanisms 
of electropermeabilization (EP) of biological cells and lipid vesicles [1-10]. In these settings, 
there has been a longstanding debate over the mechanism of pore opening and expansion 
across cell membranes and/or lipid bilayer. Some authors argue for a rearrangement of the 
phospholipid bilayers under strong electric field excitation and the formation of aqueous 
pores. However, their origin, or formation of voltage gated channels, remains a crucial open 
question. This challenge is further compounded by the role of the outside vesicle environment 
which eventually impacts significantly the shape of the vesicle, i.e. role of the electrical 
conductivity ratio Λ of the inside and the outside vesicle solution. In general terms, lipid 
membranes can be treated as incompressible fluid interfaces and hold significant promise as 
an arena for investigating multiphysics cell model membranes. Additionally, there does seem 
to be (at least) a consensus that the pore size and transmembrane potential, Vm, are two critical 
variables in determining EP dynamics, but little is known about the contribution from each 
cue individually, see e.g. Refs. [7-8]. Current strategies for visualizing the time-dependent 
behavior of individual electropores in vesicles rely on detecting the dynamics of solute flow 
between the internal and external volumes [10], or using optical single-channel recording and 
fluorescence imaging of bilayers [6].

In light of the above, this work considers a tractable geometric configuration of lipid 
vesicles for which the ED and EP properties can be studied simultaneously. In this regards, 
we highlight the importance of computing a membrane related electromechanical quantity, the 
Maxwell stress tensor (MST), for the multi-physics multiscale simulation of ED and EP. On 
the experimental side, the electropore growth times are characterized by studying the 
dynamics of solute flow between the internal and external volumes of giant unilamellar 
vesicles composed of POPC. We find that the conductivity ratio Λ impacts significantly the 
rate of change of the size of a macropore occurring in electrodeformed and 
electropermeabilized vesicles. To explain these differences, we compare the electrical force 
acting on a transient macropore which is induced by the local transmembrane potential 
obtained from simulations with experimental data. The quadratic dependence of the electric 
force expanding the pore with Vm is consistent with an extension of the SNK model as Λ is 
varied over two orders of magnitude. 

II. Background

From the perspective of today’s understanding of electropermeabilized lipid vesicle 
membranes the approach of SNK [9] attempts to predict the expansion of macropores based 
on the integration of the MST over the internal surface delimiting a pore in the membrane. 
One question they addressed was how the process of creation and evolution of macropores 
proceeds during and after the electric pulse excitation. When Vm exceeds the EP threshold, 
membrane defects begin to occur by thermal fluctuations and energy does redistribute to 
maintain consistent boundary conditions through a perturbation to the electric field. Once the 
initial permeabilization of the membrane has occurred, SNK’s answer was that the rate of 
change of pore radius, r, when it is above the minimum pore radius (r>r*), is determined by 
the force U, so that , with

𝑑𝑟
𝑑𝑡 =

𝐷
𝑘𝑇𝑈(𝑟,𝑉𝑚)

 , where D is the diffusion 𝑈 = ∑4
𝑖 = 1𝑈𝑖 = 𝑉𝑚

2𝑓𝑆𝑁𝐾(𝑟) +  
4𝛽
𝑟 (𝑟 ∗

𝑟 )4
‒ 2𝜋𝛾 + 2𝜋𝜎𝑒𝑓𝑓𝑟

coefficient of pore radius in the r space [9], k is the Boltzmann constant, T is the absolute 

Electronic copy available at: https://ssrn.com/abstract=4125800



4

temperature. The first term accounts for the electric force induced by the local value of Vm; 
the second represents the steric repulsion of lipid heads, the third, for the edge tension 
opposing the expansion of the circumference of the pore, and the fourth introduces the surface 
tension of the membrane [9,14]. In the first term, the function   is obtained 𝑓𝑆𝑁𝐾 = 𝐹𝑚𝑎𝑥

𝑟 + 𝑟1

𝑟 + 𝑟2

by SNK as an approximation of numerical results when  is set to 1, Fmax is the maximal 
radial force at Vm = 1 V, and r1 and r2 are two constants [9]. In the other terms,  denotes the 
steric repulsion energy, r* is the minimum pore radius,  is the pore edge tension, and finally, 

the effective tension of the membrane felt by the pore is . Here  is 
 

'
' 0

eff 2

p
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1
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the surface tension of the membrane without pore,  is the energy per unit area of the '
hydrocarbon-water interface, A is the surface area of the lipid bilayer membrane and the total 
pore area , with S denoting the membrane surface and N is the pore density. 2

p
S

d A N r S

In Fig. 1, the curve for Λ=1 (SNK) illustrates how the different contributions in USNK vary 
with (toroidal) pore radius. 

Fig. 1: The predicted change in the four contributions of the force acting on the pore as a U
function of pore radius for different values of the electrical conductivity ratio Λ of the inside 
and the outside vesicle solution. Fp denotes the electromechanical force contribution. Note 
that for the electric force {i;1/i} means that . Here, the force exerted on a pore by 𝑓𝛬 ≡  𝑓1/𝛬

the electric field, for Λ=1, is computed with defined in [9], while for Λ>1, we provide  SNKf r
a formula  working for values of Λ . The parameterized analytic function  (solid 𝑓𝛬(𝑟) 𝑓𝛬(𝑟)
lines) are shown to match well with the numerical solution (solid symbols). For this 
calculation we assume σeff = 10-6 N/m and γ = 24 pN. It is discernible that the electrical 
component dominates over the other contributions in the entire range of r investigated. The 
vertical red dotted line represents the limit of our experimental resolution (values of r below 
this limit are not detected experimentally).
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The dominant term originates from the electrical force acting on a hydrophilic (conductive) 
pore which is induced by the local transmembrane potential. This is understood intuitively as 
the application of Vm changes the free energy of the hydrophilic (conducting) pore such that 
its free energy is reduced [14-17]. Table I lists the appropriate physical parameters used to get 
Fig. 1. 

Table I: A summary of the parameters used in the computational model for producing the 
specified figures.

Parameters Notation Numerical value
Membrane total thickness dm (m) 3.70 × 10−9

Membrane dielectric thickness dme (m) 2.71 × 10−9

Internal medium permittivity ε0εc (Fm−1) 7.08 × 10−10

Internal medium conductivity λin (Sm−1) 4.4 × 10−4-6.2 × 10−3

Membrane permittivity ε0εm (Fm−1) 1.77 × 10−11

Membrane conductivity λm (Sm−1) 1 × 10−11

External medium permittivity ε0εe (Fm−1) 7.08 × 10−10

External medium conductivity λext (Sm−1) 4.3 × 10−4-5.6 × 10−3

Temperature T (K) 300
Diffusion coefficient for pore radius D (m²/s) 5 × 10−14

Initial surface tension σ0 (N/m) 10−6

Steric repulsion energy β (J) 1.4 × 10−19

Pore edge tension γ (N) 43.3 × 10−11

Energy of hydrocarbon-water interface per unit area σ' (N/m) 2 × 10−2

Minimum size of hydrophilic pore at Vm=0 V r* (m) 0.51 × 10−9

For Λ=1, the maximal rate of pore radius change is dictated by the rate at which the 
cell can be deformed and Vm can be large. It is noteworthy that our model reproduces the 
outputs of SNK’s model for the case Λ=1. However, SNK’s model did not include the impact 
of variations in Λ. Here, we present an extended version of the SNK model (where external 
medium conductivity and internal medium conductivity are different), and show that the 
influence of Λ on the expression of the electric force expanding a pore can be well captured if 
the form of  is changed to  , where Fmax, r1, r2, r3 and  SNKf r 𝑓𝛬 = 𝐹𝑚𝑎𝑥(𝑟 + 𝑟1)( 1

𝑟 + 𝑟2
‒

𝜒
𝑟 + 𝑟3)

 are constants which depend only on Λ. Table II lists the material properties for cells 𝜒
deduced from consolidated literature data to obtain Fig. 1, and includes details of the 
numerical method used to compute . 𝑓𝛬

Electronic copy available at: https://ssrn.com/abstract=4125800



6

Table II: Fit parameters used for the electric force contribution in USNK, i.e. 𝐹𝑝 =  𝑉𝑚²𝐹𝑚𝑎𝑥

, as a function of the conductivity ratio Λ. Here, the notation {i;1/i} (𝑟 + 𝑟1)( 1
𝑟 + 𝑟2

‒
𝜒

𝑟 + 𝑟3) 

means that . 𝑓𝛬 ≡ 𝑓1/𝛬

Λ Fmax(nN/V²) r1(nm) r2(nm) r3(nm) χ
1 (SNK) 0.69 0.23 1.18 0 0
{2;1/2} 1.008 0.242 1.221 1.828 0.399
{3;1/3} 1.599 0.207 1.179 1.544 0.680
{4;1/4} 1.806 0.179 1.079 1.405 0.758
{5;1/5} 1.930 0.157 0.994 1.291 0.803
{6;1/6} 2.186 0.142 0.934 1.183 0.846
{7;1/7} 2.387 0.130 0.880 1.097 0.873
{8;1/8} 2.412 0.121 0.829 1.032 0.887
{9;1/9} 2.356 0.113 0.781 0.980 0.893

{10;1/10} 2.373 0.107 0.744 0.931 0.902

There is an important interesting general lesson here if we consider large pores, i.e. r >> 100 
nm (which can also be experimentally detected), we find that , by 𝑈 = 𝑉𝑚

2𝑓𝛬(𝑟) ‒ 2𝜋𝛾
neglecting the contribution of membrane tension which is expected to have a negligible value 
during the early stages of pore formation and the contribution of the steric repulsion of head 
groups which is similarly small with respect to its r-5 scaling. Thus, the rate of pore expansion 
during pulse application is given by = . Due to the large 

𝑑𝑟
𝑑𝑡

𝐷
𝑘𝑇𝑈 ≈

𝐷
𝑘𝑇(𝑉𝑚

2𝑓𝛬(𝑟) ‒ 2𝜋𝛾)
experimental variability of the pore edge tension found for POPC (and Λ=1) in the literature, 
we derive all of our numerical results using an average value of γ = 24 pN [10,18].

Ultimately our goal is to see how well SNK’s model fits with the observed data. This 
model has several questionable aspects. We note that although the approximations leading to 
the electric force seem reasonable, it would appear that the details thereof have not been 
completely disentangled, e.g. the key point to be stressed is that the SNK’s model does not 
consider ED and is therefore unable to predict the impact of Λ on the vesicle deformation. 
Some experimental work has already highlighted this concern, e.g. [10]. While there has been 
significant theoretical treatment of planar membranes (e.g. SNK [9]) there has been little 
study of cell and vesicles membranes with other common shapes (spheroids, ellipsoids) have 
not been explored beyond a few studies [5,11]. Moreover, the collective nature of SKN’s 
model, i.e. coupling of individual pores through the membrane lipid-water interfacial tension, 
is still very much unknown, and a wide variety of direct and indirect detection experiments 
are actively searching for evidence of post-pulse collective membrane resealing kinetics. 

Fast digital imaging [10] has offered insight into the deformation and permeabilization 
of giant unilamellar vesicles subjected to electric pulses of varying strength/duration. The 
aspect ratio (defined as the ratio of semi-major axis b to semi-minor-axis a of the ellipsoid) of 
the ellipsoidal deformation for a vesicle (initially spherical) represents a reliable metric for the 
underlying morphology of the vesicle subjected to electric pulses since it gives a length scale 
that determines which of the two phenomena (ED and EP) will dominate. Recently [16], there 
has been an increased emphasis on the role anisotropy may play in the broad set of 
phenomena described above. When b/a is large at elevated Vm, EP dominates, and maximum 
membrane deformation coincides with maximum pore aperture. The transmembrane potential 
for an ellipsoidal membrane can be evaluated [16] as
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, where E0, t, t0, 𝑉𝑚(𝜃,𝑡) = 𝐸0
(𝑏2 ‒ 𝑎²)  

𝑏 ‒
𝑎2

𝑏2 ‒ 𝑎2ln (𝑏 + 𝑏2 ‒ 𝑎2

𝑎 )(
𝑎 cos (𝜃)

𝑎²cos ²(𝜃) +  𝑏² sin²(𝜃))(1 ‒ exp( ‒ (𝑡 ‒ 𝑡0)/𝜏))

τ and θ respectively represent the electric field intensity, time, the time of electric pulse onset, 
the membrane charging time and the angle between membrane surface normal vector and the 
direction of the field. Using this expression for the transmembrane potential, we can now 
proceed with comparing theoretically predicted pore expansion rates with experimentally 
obtained data. 

III. Experimental

Before proceeding with our method for inferring the electrical force on a macropore, 
we pause to discuss how the experimental results of this study should be interpreted in the 
light of previous work dealing with the electropermeabilization of giant unilamellar vesicles. 

Giant unilamellar vesicles (GUVs) of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 
(POPC) (Avanti Polar Lipids, Alabaster, AL) were prepared by using the electroformation 
method [19], for which 10 µL of a 4 mM of lipid solution prepared in chloroform is spread on 
the surfaces of a pair of indium tin oxide-coated, conductive glasses (Delta technologies Lt., 
Germany). Then, the glasses are kept in desiccator for 2 h to remove all traces of the organic 
solvent. The two glasses are then placed with their conductive sides facing each other and 
separated by a 2 mm-thick Teflon frame to form a chamber. The chamber is filled with a 200 
mM sucrose (Merck, Germany) containing NaCl at concentrations up to 1 mM (Merck, 
Germany) depending on the desired internal vesicle conductivity. The chamber is then 
connected to a function generator (Agilent, Germany) and an alternating current (AC) of 1 V 
with a 10 Hz frequency is applied for 1 hour. After harvesting the vesicle solution from the 
electroswelling chamber, it is 10-fold diluted in 200 mM of glucose solution (Merck, 
Germany). The external solution also contained between 0 and 1 mM NaCl to adjust the 
desired external conductivity. We note that the sugar asymmetry between the interior and the 
exterior of the vesicle enhances the optical contrast of phase contrast images due to refractive 
index difference of glucose and sucrose solutions and stabilizes the vesicle position onto the 
bottom of the electroporation chamber due to the higher density of the sucrose solution in the 
GUV interior. The osmolarities of sucrose and glucose solutions are measured with a freezing 
point osmometer Osmomat 3000 (Gonotec GmbH, Germany) and matched to avoid osmotic 
pressure effects. The conductivities of the sucrose and glucose buffers are measured with 
SevenEasy Conductivity Device (Schwerzenbach, Switzerland). The results of conductivities 
are illustrated in Table III.
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Table III: Conductivity values for vesicle interior and exterior buffers for the 
experimental conditions of Figs. 2 and 3.

Conductivity 
ratio, Λ

Concentration and conductivity of 
vesicle interior solution

Concentration and conductivity of 
vesicle exterior solution

0.08 200 mM sucrose, 4.35 ±0.65 μS/cm 200 mM glucose and 1 mM NaCl, 
56.68 ± 0.63 μS/cm

0.14 200 mM sucrose, 4.35 ±0.65 μS/cm 200 mM glucose and 0.5 mM NaCl, 
32.10 ± 0.08 μS/cm

1 200 mM sucrose, 4.35 ±0.65 μS/cm 200 mM glucose, 4.31 ± 0.35 μS/cm
4.6 200 mM sucrose and 0.5 mM NaCl, 

33.69 ± 0.04 μS/cm 
200 mM glucose, 4.31 ± 0.35 μS/cm

6.6 200 mM sucrose and 1 mM NaCl, 
62.46 ± 2.46 μS/cm

200 mM glucose, 4.31 ± 0.35 μS/cm

The electroporation chamber, purchased from Eppendorf (Eppendorf electrofusion 
chamber, Hamburg, Germany), consisted of a Teflon frame confined above and below by two 
glass plates through which observation is possible. A pair of parallel electrode wires (92 μm 
in radius) is located at the lower glass at a distance of 475 ± 5 μm. The spacing between the 
electrodes is important for defining the field strength at the location of a selected vesicle 
above the floor of the chamber. Assuming that the electrodes are perfect cylinders, the 
distance between the electrodes right at the bottom glass is 674 μm. Because the exact 
location of the vesicle center of mass above the glass cannot be precisely defined, a nominal 
gap distance of 500 μm between the electrodes is used, which may induce an error of ∼10% 
for the electric field strength. The chamber is attached to a βtech pulse generator GHT_Bi500 
(βtech, l’Union, France), which generates square-wave direct current (DC) pulses. The pulse 
strength and duration ranges from 8 to 26 V (0.16 ± 0.016 to 0.52 ± 0.052 kV/cm), and 10 to 
50 ms, respectively.

An inverted microscope Zeiss Axiovert 200 (Jena, Germany) equipped with a Ph2 
20x/0.4 objective is used to monitor GUVs in phase contrast mode. An ultra-high-speed 
digital camera v2512 (Phantom, Vision Research, New Jersey, USA) is mounted on the 
microscope and connected to a computer. Image sequences are acquired at 20,000 fps which 
corresponds to a sampling rate of 50 µs, with resolution of 1.42 pixels/μm. The sample 
illumination is achieved with a mercury lamp. The onset of pulse application is defined as one 
frame (50 µs) before visible vesicle deformation occurs. In order to compute the 
transmembrane potential of the vesicles in their deformed state, the image sequences of a total 
of 41 vesicles containing a single expanding pore are processed via a contour recognition 
numerical method [20] which allows us to extract the values of the long and short semi-axis 
of the vesicles. Pore radii are computed using a lab developed pore edge detection software, 
PoET based on a numerical method for image processing described in Ref. [17] with a 
precision of the order of 0.5 µm.

The data are obtained with electropermeabilized giant unilamellar vesicles composed 
of POPC of radii ranging from 14 to 54 m filled with 0.2M sucrose solution and immersed in 
a 0.2M glucose solution to stabilize the stabilize the vesicles osmotically and facilitate pore 
imaging under phase contrast microscopy. Above a critical Vm close to 1 V for tensionless 
vesicle membranes [10], the formation of macropores (diameter in the range 0.7-15 m) with 
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lifetimes of up to a few hundreds of milliseconds is detected. The evolution of the size of a 
macropore can be individually observed under phase contrast microscopy by tracking the 
interrupted vesicle contour visualized from difference in refractive indexes between the inner 
sucrose and external glucose solutions, and computing its radius from a numerical method 
developed in [17]. As all observed pores are located at the vesicle pole (θ=0) we finally 
assume that Vm=Vm(θ=0,tp), where tp represents the time at which nucleation starts, takes a 
constant value in the time interval over which  is measured. 

𝑑𝑟
𝑑𝑡

As an illustrative example, Fig. 2 shows the aspect ratio dynamics for the 
electroporated vesicle corresponding to the same experimental data displayed in Fig. 3, with a 
nominal applied field strength of 0.24 kV/cm, and Λ = 6.6.  The initial diameter of the vesicle 
was 23.2 μm and after 50 ms, it was deformed into a prolate spheroid with b/a = 1.8. The 
maximum shape deformation is attained close to the pulse end.

Fig. 2: Time dependence of the aspect ratio of the electrodeformed vesicle during the 
application of dc electric pulse (0.24 kV/cm, 50 ms). The blue dotted lines indicate the pulse 
onset and end, respectively. The blue shaded region corresponds to the time interval over 
which the pore expansion velocity (dr/dt) was considered constant. The grey shaded region 
represents the time interval over which the pore size was too large for the numerical method 
we used to accurately interpolate the contour of the deformed vesicle as in the image it was 
perturbed by the presence of the macropore.
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IV. Results and discussion

In the upper top panel of Fig. 3 we show the ED and EP of a POPC vesicle 
characterized by phase contrast microscopy images. The membrane charging stage starts with 
the application of the electric pulse to the initially spherical vesicle followed by several 
electrodeformed states of the ellipsoidal membrane along the direction of the applied field. 
The macropores are also visualized in the snapshots of the lower top panel using our detection 
software [17]. The bottom panel of Fig. 3 shows the time evolution of the pore radius 
following our measurement protocol [17].

Fig. 3: Pore radius expansion as a function of time during the application of direct current 
electric pulse (0.24 kV/cm, 50 ms) with Λ=6.6. The top panels show phase contrast 
microscopy images (upper panel) and software [17] outputs for pore radius computation 
(lower panel) at different times during pulse application. The scale bar represents 20 m. The 
pore diameter, 2r, and time with respect to the recording onset are indicated in each image. 
The graph displays the time trace of the pore radius. The blue dotted lines represent the pulse 
onset and end, respectively. The red line represents the linear approximation of early pore 
expansion.

The guiding principle of the analysis we propose is this: in order to unravel the impact 
of conductivity conditions on the rate of expansion of the macropores considered in this study, 
we focus on the early stages of pore growth where the assumption of a quasi-constant value of 
Vm is valid. We generated a set of data comprising the pore expansion slopes of all porated 
GUVs and selected only those for which a single macropore is nucleated in the membrane 
(Fig. 3). Figure 4 shows the rate of pore expansion as a function of Vm. The dashed lines in 
Fig. 4 represent the prediction of the extended SNK model for   at a given value of Λ. The 

𝑑𝑟
𝑑𝑡

strong correlation between the rate of pore expansion with Vm² can be clearly seen from this 

Electronic copy available at: https://ssrn.com/abstract=4125800



11

graph. For all data, the error bars in Fig. 4 represent experimental error associated with 
estimation of the slope  and Vm² intercept related to the 50 µs time scale of camera 

𝑑𝑟
𝑑𝑡

sampling. 

Fig. 4: Dynamics of pore expansion during electric pulse application as a function of the 
square of the transmembrane potential. Solid symbols show measurements on individual 
vesicles. For comparison, we also show the extended SNK model (dashed lines), 
i.e.  = , where  has been introduced to account for differences 

𝑑𝑟
𝑑𝑡

𝐷
𝑘𝑇𝑈 ≈

𝐷
𝑘𝑇(𝑉𝑚

2𝑓𝛬(𝑟) ‒ 2𝜋𝛾) 𝑓𝛬

in conductivity ratio Λ displayed in different colors. The upper panel shows results for Λ <1 
while the lower panel concerns Λ >1. See Table I for the details of the experimental 
conditions. The shaded regions reflect the error in  related to the measurement of Λ.𝑓𝛬

On the simulation side, we use finite element simulations in order to quantify the 
electromechanical behavior of electropermeabilized lipid vesicle membranes [21-22]. We 
recently reported on an innovative mechanistic model using the thin-layer approximation 
(TLA) of cell and vesicle membranes for the multi-physics multiscale simulation of ED to 
deal with the large differences in dimensions of the different computational domains [11-13]. 
While in conventional electromechanical scenarios, such cell membrane is treated using a 
physical thickness, our generic approach is based on an explicit Dirichlet boundary condition 
(TLA) tailored to tackle the issue of multiscale simulation of ED. If we do not look at the 
interior of the membrane, but only at its effect on boundary conditions, then it can be replaced 
by TLA. In the appendix, we outline the procedure employed to compute the MST for 
computing the electric force expanding a pore and give a detailed description of the definition 
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of pore conductivity as a function of Λ. For this work we take an electrostatic approach in 
solving the MST, and we also assume that the membrane can be regarded as an electrically 
linear, homogeneous isotropic and continuous medium. 

The observed broad range of Vm values shown in Fig. 4 can be related to the initial 
mechanical tension of the membrane, which is expected to lower the EP threshold of the 
membrane [10,23]. This can be also confirmed by analyzing the linear dependence (Fig. 5) of 
the relative increase in membrane surface area induced by the application of an electric field, 

 , on the electrical tension (which is a function of Vm²) induced in the membranes, 𝛼𝑒𝑙 =
𝐴 ‒ 𝐴𝑖

𝐴𝑖

where  and  respectively correspond to the surface area of the deformed vesicle and the area of 𝐴 𝐴𝑖
a sphere of equal volume.

Fig. 5: Vm² and electrical tension 𝜎𝑒𝑙 induced in the membrane as a function of the total vesicle 
area increase . The blue symbols and dashed line show the reference 𝛼𝑡𝑜𝑡 = 𝛼𝑒𝑙 + 𝛼0
experimental data for which , while the shaded region shows the associated 𝜎0 ≈ 0
experimental uncertainty on the value of . Black dots correspond to 40 data points taken 𝜎𝑒𝑙
from a total of 20 electrodeformed vesicles. The slope of the blue line  versus 𝜎𝑒𝑙 𝛼𝑒𝑙 + 𝛼0 ≈

 yields a value of the membrane stretching modulus of 0.35±0.07 N/m.𝛼𝑒𝑙(𝜎0 ≈ 0)

Based on the original studies by Helfrich [24], the mechanical deformation and apparent area 

increase of vesicles subjected to pulse electric fields can be presented as 𝛼𝑒𝑙 =
8𝜋𝜅
𝑘𝑇 ln (𝜎𝑒𝑙 + 𝜎0

𝜎0 )
, where σ0 is the initial tension of the vesicle, σel is the electrical tension induced in the +

𝜎𝑒𝑙

𝐾
membrane when the vesicle is exposed to the electric field, κ is the membrane bending 
stiffness (κ is on the order of 30 kT for POPC [25]), and  is the bulk elastic modulus of the 𝐾
membrane (here  is expected to be close to 0.2 N/m [1,25]). It has also been argued by 𝐾
Needham and Hochmuth [23] that if the electrical tension is much larger that the initial 
tension and if membrane incompressibility is assumed, then the total tension is 𝜎 = 𝜎0 + 𝜎𝑒𝑙

, where  is the electromechanical tension,  is the permittivity = (𝛼0 + 𝛼𝑒𝑙)𝐾 𝜎𝑒𝑙 = 𝜀𝜀0(ℎ 2ℎ2
𝑒)𝑉 2

𝑚 𝜀
of the membrane,  the vacuum permittivity, h is the total bilayer thickness,  3.7 nm, and  𝜀0 ℎ~ ℎ𝑒
the dielectric thickness, 2.7 nm [23]. By contrast with Ref. [23], where the initial tension  ℎ𝑒~ 𝜎0
is induced via a pipette aspiration pressure which has for effect to increase the area of an 
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initially unconstrained vesicle by , our vesicle preparation protocol does not permit a full 𝛼0
control over the initial area-to-volume ratio of individual vesicles, thus resulting in vesicles 
with a broad range of initial tensions  in our experiments. Consequently, a decrease in the 𝜎0
initial area-to-volume ratio increases the tension in the membrane, similarly as an isotropic 
swelling of the vesicle, which can be described by an initial isotropic area increase of . 𝛼0
More significantly, the relative increase in area  induced by the electric field relies on  𝛼𝑒𝑙 𝐴𝑖
which is a function of the encapsulated volume, and thus of . For a given value of the 𝛼0
electrical tension , we argue below that the relative increase in membrane area induced by 𝜎𝑒𝑙
the electric field can be expressed as , where  accounts for 𝛼𝑒𝑙 ≈ 𝛼𝑒𝑙(𝜎0 ≈ 0) ‒ 𝛼0 𝛼𝑒𝑙(𝜎0 ≈ 0)

 in the case an initially tensionless vesicle, i.e. a vesicle that encapsulates a sufficiently 𝛼𝑒𝑙
small volume of water so that thermal fluctuations would induce a visible flickering of its 
membrane surface. For that purpose, we consider the dependence of the relative area increase 

induced by the application of the field on the initial isotropic area increase of . 𝛼𝑒𝑙 =
𝐴 ‒ 𝐴𝑖

𝐴𝑖
 𝛼0

We define  as , where  and  respectively represent the initial apparent area 𝛼0 𝛼0 =
𝐴𝑖 ‒ 𝐴0

𝐴0
𝐴𝑖 𝐴0

of the vesicle and the initial apparent area of the same vesicle in the case of . Based (𝜎0 = 0)

on this definition  can be written as = . In the case of a 𝛼𝑒𝑙 𝛼𝑒𝑙 =
𝐴 ‒ 𝐴𝑖

𝐴𝑖
=

𝐴
𝛼0 + 1 ‒ 𝐴0

𝐴0

𝐴
𝐴0(𝛼0 + 1) ‒ 1

negligible initial tension, i.e. , we have  where . Using (𝜎0 = 0) 𝛼0 = 0 𝛼𝑒𝑙(𝜎0 = 0) =  
𝐴
𝐴0

‒ 1

this relation we get   as  in our experiments.𝛼𝑒𝑙 =  
𝛼𝑒𝑙(𝜎0 = 0) ‒ 𝛼0

(𝛼0 + 1) ≈ 𝛼𝑒𝑙(𝜎0 = 0) ‒ 𝛼0 𝛼0 ≪ 1

In this context, Fig. 5 was plotted by selecting a vesicle exhibiting a flickering membrane 
as a reference (blue data) to compute  as a function of . The electrical tension 𝛼𝑒𝑙(𝜎0 ≈ 0) 𝜎𝑒𝑙
was gradually increased at values above 1 mN/m in order to set our analysis within the 
boundaries of membrane stretching regime [25] (i.e. corresponding to the case ), and 𝜎0 ≪ 𝜎𝑒𝑙
every data point abscissa was translated by . Then, the data were fitted using the relation 𝛼0

 to compute the stretching modulus , yielding a value of 0.35 ± 0.07 N/m 𝜎𝑒𝑙 = 𝛼𝑒𝑙(𝜎0 ≈ 0)𝐾 𝐾
which is consistent with typical values reported in the literature [10,18]. The values of the 
initial tensions range from 0.03 mN/m to 4.8 mN/m.

V.  Concluding remarks and perspectives

To summarize, a combination of experimental observations of the dynamic behavior 
of pores, extended SNK analysis, and simulations by using our TLA-based vesicle model 
suggests that the conductivity ratio of the inside and the outside vesicle solution has 
significant and distinctive influence on the rate of change of the macropore size in 
electropermeabilized lipid vesicles. With the experimental data accessible to us, we have 
identified the impact of the conductivity ratio on the rate of pore expansion in 
electropermeabilized membranes. A novelty of our results is given by a precise analytical 
adaptation of the SNK model allowing us to predict the EP efficiency as a function of 
conductivity conditions. We also learnt that the basis behind these distinctive behaviors is 
related to the change in the effective electromechanical behavior of the vesicle with respect to 
a change in the morphological parameter (i.e. aspect ratio).

Given these observations, it is useful to indicate the senses in which the analysis 
derived in this study can capture the essence of electrodeformed and electropermeabilized 
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cells, notably the pore density dynamics in the membrane. Do the electromechanical 
properties of a cell membrane look like the properties of a stretched lipid bilayer? We first 
note that intact cell membranes contain many features not found in artificial lipid bilayers. 
Secondly, phospholipid vesicles are often used as model systems to study the 
electromechanical properties of ling cells [11-12]. For comparison with biological cells, Λ 
varies over a range of values 0.1-1 [8,11,16,18]. We expect our analysis will be useful to 
characterize the electromechanical properties of living cells, and will allow to improve the 
current disagreement between the current state of the art numerical models and the observed 
impacts of Λ on electroporation efficiency [7]. A number of points still remain to be 
investigated, regarding the fundamental issue of the large number of small pores with a 
random distribution which is more relevant for realistic defective conditions in an 
electropermeabilized cell [5-6,11]. One important question in this regard is how a SNK 
generalization can be implemented to deal with the intracellular mechanical changes. This 
connection needs to be understood in (at least) two different ways. First, there is the problem 
of understanding strain and stress at interfaces in-between the different phases of the cell [26-
28]. And second, there is the solid phase of the cytoplasm (cytoskeleton network and 
macromolecular crowders) in eukaryotic cells which is known to provide structural support 
and mechanical stability, and play a fundamental role in controlling the rate at which the cell 
can be deformed [26-28]. The importance of strain engineering might prove crucial for the 
design of technologies like vesicle-based biosensors and artificial cells acting as drug delivery 
carriers. That is a formidable project, extending well beyond what is conventionally 
considered multiphysics [11-12].

Data availability
The data that support the findings of this study are available from the corresponding author 
upon reasonable request.
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Appendix: Computational procedure for assessing the macropore size dynamics in 
electropermeabilized lipid vesicle membrane

The main point is to review the essential physics for computing the electric force 
acting on the pore and refer readers to [10] for additional technical details. To represent the 
components of the lipid vesicle on the same footing, we employ as in our previous work [12] 
single-phase (isotropic and homogeneous) materials.

Our method follows the same numerical procedure as used by SNK in [9]. Figure A1 
shows the 2D axisymmetric configuration comprising four domains: internal fluid, membrane, 
external fluid and pore, where the size of the system can be scaled in terms of the pore radius 
r. Dirichlet boundary conditions on top and bottom horizontal boundaries are applied, such as 
V(z=0)=0V and V(z=40r)=1V, to analyze the impact of Vm. 

Fig. A1: Sketch (not to scale) of the numerical configuration used to compute the electrical 
force Fp acting on a pore during pulse application. (1), (2), (3), (4), ∂p and n respectively 
represent the external fluid, internal fluid, membrane of thickness dm, the pore of radius r, 
pore surface and the normal vector to pore surface. The red axis represents the axis of 
rotational symmetry.

Within each domain, the following set of equations is solved

.J = Q,                       (A1)∇
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J = λE,                        (A2)

E = - V,                       (A3)∇

T =  (E×E – E²),                     (A4)
1
2

where λ,  V and Q account respectively for the electrical conductivity, permittivity, electric 
potential and current density, whereas J, T, and E refer respectively to the surface current 
density, Maxwell stress tensor, and electric field. Additionally, electric insulation boundary 
conditions, i.e. n.J=0, are applied on the vertical faces of the system while current 
conservation boundary conditions are applied to all other interfaces. The conductivity of the 
solution filling the pore is defined as a function of the conductivities of the internal and 
external solutions, and the vertical coordinate z

,  (A5)𝜆𝑝 =  𝜆𝑒𝑥𝑡𝑝 – (𝜆𝑒𝑥𝑡𝑝 ‒ 𝜆𝑖𝑛𝑝
)(𝑧 + 20𝑟

ℎ ‒
1
2) 

where  and  are respectively defined as 𝜆𝑒𝑥𝑡𝑝 𝜆𝑖𝑛𝑝

, (A6)𝜆𝑒𝑥𝑡𝑝 =  𝜆𝑒𝑥𝑡 ‒
𝜆𝑒𝑥𝑡 ‒ 𝜆𝑖𝑛

2(1 + 2𝑑𝑚/(𝜋𝑟))

. (A7)𝜆𝑖𝑛𝑝 = 𝜆𝑖𝑛 +
𝜆𝑒𝑥𝑡 ‒ 𝜆𝑖𝑛

2(1 + 2𝑑𝑚/(𝜋𝑟))

A technical point to be made here is that Eq.(A4) allows to compute the MST and the electric 
force Fp acting on the pore in the membrane plane which is defined as the integral of the 
normal component of Maxwell stresses over the surface ∂p of the pore (with reference to 
Fig.A1) as

 . (A8)𝐹𝑝 = ∬
∂𝒑𝒏.(𝑻(𝟒) ‒ 𝑻(𝟑))𝒏 𝑑𝑆

As an aside, we note that the resting potential (dV/dt=0) in most polarized cells and vesicles is 
set to - 70 mV. 

From a computational perspective, the numerical analysis was performed via a cluster 
computer (262 GB RAM, Intel® Xeon® 2.2 GHz (48 CPUs) processor) using the COMSOL 
simulation package [13]. The mesh is constructed using COMSOL built-in extremely fine 
element size parameter setting for all domains. Eqs.(S1-S4) are solved using quadratic shape 
functions within triangular finite elements. Since the size of the system scales with the pore 
radius r ranging from 0.51 nm to 100 nm, the number of elements discretizing the pore 
domain is respectively of 577 up to 652, from 5541 up to 1967 elements for the membrane 
domain, from 94 up to 42 nodes for pore surface, and from 18506 to 35924 for the entire 
system leading to the resolution of respectively 37315 up to 72205 degrees of freedom which 
represents to computational times of respectively 21 seconds up to 36 seconds.
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